Publications

Checking latest measurements and satellite data prior to Congo peatlands expedition. Credit: Kevin McElvaney/Greenpeace

2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2011

2021

Apers, S., De Lannoy, G.J.M., Baird, A.J., Cobb, A.R., Dargie, G.C., del Aguila Pasquel, J., Gruber, A., Hastie, A., Hidayat, H., Hirano, T., Hoyt, A.M., Jovani-Sancho, A.J., Katimon, A., Kurnain, A., Koster, R.D., Lampela, M., Mahanama, S.P.P., Melling, L., Page, S.E., Reichle, R.H., Taufik, M., Vanderborght, J. and Bechtold, M. 2021. [Pre-print]. Tropical peatland hydrology simulated with a global land surface model. Journal of Advances in Modeling Earth Systems.

Chadburn, S.E., Burke, E.J., Gallego-Sala, A.V., Smith, N.D., Syndonia Bret-Harte, N., Charman, D.J., Drewer, J., Edgar, C.W., Euskirchen, E.S., Fortuniak, K., Gao, Y., Nakhavali, M., Pawlak, W., Schuur, E.A.G. and Westermann, S. 2021. [Pre-print]. A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme. Geoscientific Model Development.

Evans, C.D., Peacock, M., Baird, A.J., Artz, R., Brown, E., Burden, A., Callaghan, N., Chapman, P.J., Cooper, H.M., Coyle, M., Cumming, A., Dixon, S., Helfter, C., Heppell, C., Holden, J., Gauci, V., Grayson, R.P., Jones, D., Kaduk, J., Levy, P., Matthews, R., McNamara, N., Misselbrook, T., Oakley, S., Page, S., Rayment, M., Ridley, L.M., Stanley, K., Williamson, J., Worrall, F., Morrison, R. 2021. Overriding water table control on managed peatland greenhouse gas emissions. Nature, 593(7860), pp.548-552.

Loisel , J., Gallego-Sala, A.V., Amesbury, M.J.,  Magnan, G., Anshari, G., Beilman, D.W.,  Benavides, J.C., Blewett, J.,  Camill, P., Charman, D.J., Chawchai, S., Hedgpeth, A., Kleinen, T.,  Korhola, A., Large, D., Mansilla, C.A.,  Müller , J., van Bellen, S., West , J.B., Yu, Z., Bubier, J.L., Garneau, M., Moore, T., Sannel , A.B.K., Page, S., Väliranta , M., Bechtold , M., Brovkin, V.,  Cole , L.E.S., Chanton, J.P., Christensen , T.R., Davies, M.A. , De Vleeschouwer, F., Finkelstein, S.A., Frolking, S., Gałka, M., Gandois , L., Girkin , N., Harris , L.I., Heinemeyer, A. , Hoyt , A.M., Jones, M.C., Joos, F.,  Juutinen, S., Kaiser, K., Lacourse, T., Lamentowicz, M.,  Larmola , T., Leifeld , J., Lohila, A., Milner, A.M.,  Minkkinen, K., Moss, P.,  Naafs, B.D.A. , Nichols , J., O’Donnell, J., Payne, T., Philben, M., Piilo, S., Quillet, A., Ratnayake, A.S., Roland, T.P., Sjögersten, S., Sonnentag , O., Swindles, G.T., Swinnen, W., Talbot , J., Treat , C., Valach,  A.C. and Wu , J. 2021. Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 11, pp.70-77.

Poulter, B., Fatoyinbo, T., Page, S., Hugelius, G., Koven, C., Thomas, N., Taillie, P., Smart, L., Fluet Chouniard, E., Wijedasa, L. & Rosentreter, J. 2021. A review of global wetland carbon stocks and management challenges. In: Krauss, K., Zhilian, Z & Stagg, C. eds. Wetland Carbon and Environmental Management. Washington, DC: AGU Books, pp.3-20.

Siman, K., Friess, D.A., Huxham, M., McGowan, S., Drewer, J., Koh, L.P., Zeng, Y., Lechner, A.M., Lee, J.S.H., Evans, C.D., Evers, S., Jovani-Sancho, A.J., Varkkey, H., Anshari, G., Jaya, A., Chong, K.Y., Page, S., Mishra, S. & Sjögersten, S. 2021. Nature-based Solutions for Climate Change Mitigation: Challenges and Opportunities for the ASEAN Region. British High
Commission and the COP26 Universities Network. 

White, L.J.T., Bazaiba Masudi, E., Doret Ndongo, J., Matondo, R., Soudan-Nonault, A., Ngomanda, A , Ifo, S.A., Ewango, C.E.N., Sonké, B. & Lewis, S.L. 2021. Congo Basin rainforest — invest US$150 million in science. Nature Comment, 598, pp.411-414.

Young, D.M., Baird, A.J., Gallego-Sala, A.V., Loisel, J. 2021. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci Rep 11, 9547.

2020

Girkin, N.T., Vane, C.H., Turner, B.L., Ostle, N.J. and Sjögersten, S. 2020. Root oxygen mitigates methane fluxes in tropical peatlands. Environmental Research Letters 15(6), 064013.

Harrison, M.E., Wijedasa, L.S., Cole, L.E.S., Cheyne, S.M., Choiruzzad, S.A.B., Chua, L., Dargie, G.C., Ewango, C.E.N., Honorio Coronado, E.N., Ifo, S.A., Imron, M.A., Kopansky, D., Lestarisa, T., O’Reilly, P.J., Van Offelen, J., Refisch, J., Roucoux, K., Sugardjito, J., Thornton, S.A., Upton, C., Page, S.E. 2020. Tropical peatlands and their conservation are important in the context of COVID-19 and potential future (zoonotic) disease pandemics. PeerJ. 8:e10283.    

Davenport, I.J., McNicol, I., Mitchard, E.T.A., Dargie, G.C., Ifo, S.A., Milongo, B., Bocko, Y.E., Hawthorne, D., Lawson, I.T., Baird, A.J., Page, S.E., Lewis, S.L. 2020. First Evidence of Peat Domes in the Congo Basin using LiDAR from a Fixed-Wing Drone. Remote Sensing. 2020, 12, 2196.

First Evidence of Peat Domes in the Congo Basin Using LiDAR from a Fixed-Wing Drone
Plain language summary

In February 2019, we flew a drone across a vast area of peat swamp forest in the central Congo Basin to map the surface of the peatland for the first time. We found evidence of a dome shape, with the peatland being at a higher elevation in the middle than at the edges. This shape is typical of peatlands that are caused by high rainfall collecting on the ground surface, resulting in slow decomposition of dead plants and the formation of peat. This new information helps tell us how the peatland may be affected by future environmental and land use change.

Our ground surveys had previously identified the central Congo peatlands as being the world’s most extensive tropical peatland, storing 30.6 billion tonnes of carbon. We believed that this peat swamp forest is wet because it is rain-fed, rather than being wet because of inputs of water from rivers, but satellite-based remote sensing did not show the dome shape typical of other rain-fed tropical peatlands. By using a fixed-wing drone flown inwards from the edges of the peatland, we were able to measure ground elevation extremely accurately, to within a centimetre, using a laser altimeter, and identify a dome about 2-3 metres high.

The height of the dome is shallower than other rain-fed peatland domes, which reach as high as 20m in South-East Asia. This difference is probably because the rainfall in the central Congo Basin is around half that of many Asian and other tropical peatlands. Expeditions on foot deep into the interior of the peatland, combined with the drone data, show that this area of peatland formed in a shallow basin 3-4 metres deep and 40 kilometres wide. The peat began forming about 11,000 years ago, as this part of the world got warmer and wetter, according to radiocarbon dating of the peat samples.

2019

Thornton, S.A., Cook, S., Astiani, D., Hapsari, K.A., Varkkey, H., Cole, L.E.S., Dargie, G.C., Sjogersten, S., Zawawi, N.Z., Page, S.E. 2019. ‘Pushing the limits’: experiences of women in tropical peatland research. Marine and Freshwater Research 71, 170-178.

2018

Dargie, G.C., Lawson, I.T., Rayden, T.J., Miles, L., Mitchard, E.T.A., Page, S.E., Bocko, Y.E., Ifo, S.A., Lewis, S.L. 2018. Congo Basin peatlands: threats and conservation priorities. Mitigation and Adaptation Strategies for Global Change. 24(4), pp.669–686.

2017

Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T.A., Bocko, Y.E., Ifo, S.A. 2017. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature. 542(7639), pp.86-90. 2  

2016

Page, S.E. & Baird, A.J. 2016. Peatlands and global change: Resistance and resilience.  Annual Review of Environmental Resources. 41, pp.35-57. 

2011

Page, S.E., Rieley, J.O. & Banks, C.J. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology. 17, pp.798-818.